قضایای همگرای برای جواب های معادلات درجه دوم غیرهمگن
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
- نویسنده رسول حمزه لو
- استاد راهنما سیروس مرادی اسماعیل پیغان
- سال انتشار 1391
چکیده
در این پایان نامه،ابتدا با فضای هیلبرت آشنا شده وسپس دو نوع معادله دیفرانسیل درجه دوم غیرهمگن را به گونه ای در این فضا معرفی می کنیم که دارای جواب باشند، در ادامه رفتار این جوابها رادر سه فصل مورد بررسی قرار می دهیم. در فصل اول مفاهیم مقدماتی را یادآوری می کنیم . در فصل دوم ابتدا چند منحنی را تعریف کرده و بااستفاده از آنها فضایایی را برای رفتار جواب های داده شده بیان می کنیم که نشان دهنده همگرایی ضعیف این جوابها به نقطه ای به نام مجانب مرکزی می باشند. در فصل سوم منحنی ها را تا حدودی کنار گذاشته و شرایط جدیدی بر عملگر موجود در صورت معادلات قرار می دهیم و رفتار جواب ها وقتی متغییر مستقل آنها به بینهایت میل کند را را طی چند قضیه مشاهده می کنیم که نتایج حاصل همگرایی قوی جوابها به مجانب مرکزی را نشان می دهد. باشند. سپسبه کمکمفهوم توپولوژی ضعیفو قوی، رفتار جواب های این معادلات را مورد بررسی قرار می دهیم
منابع مشابه
خوارزمی نظریهپرداز معادلات درجه دوم
محمد بن موسی خوارزمی ریاضیدان بلندآوازة ایرانی در قرن سوم هجری علمی را برای نخستینبار صورتبندی و تدوین کرد که خود آن را «جبر و مقابله» نامید؛ علمی که تمام شرایط یک دانش واقعی را داشت، یعنی همانکه اروپاییان از آن به «ساینس» تعبیر میکنند. این ریاضیدان با استفاده از این دانش نوپا توانست همة معادلات درجه دوم زمانش را حل و راه را برای حل معادلات درجة بالاتر هموار کند. بر اساس الواح بابلی...
متن کاملخوارزمی نظریه پرداز معادلات درجه دوم
محمد بن موسی خوارزمی ریاضی دان بلندآوازة ایرانی در قرن سوم هجری علمی را برای نخستین بار صورت بندی و تدوین کرد که خود آن را «جبر و مقابله» نامید؛ علمی که تمام شرایط یک دانش واقعی را داشت، یعنی همان که اروپاییان از آن به «ساینس» تعبیر میکنند. این ریاضی دان با استفاده از این دانش نوپا توانست همة معادلات درجه دوم زمانش را حل و راه را برای حل معادلات درجة بالاتر هموار کند. بر اساس الواح بابلی...
متن کاملروش جواب اساسی برای مسائل بیضوی غیرهمگن
در این پایان نامه از یک روش بدون شبکه تحت عنوان روش جواب اساسی برای حل معادلات دیفرانسیل بیضوی استفاده می شود. این روش به طور مستقیم برای حل معادلات همگن دو و سه بعدی مورد استفاده قرار می گیرد. برای حل معادلات پواسون ترکیبی از این روش و روش جواب خصوصی به کار گرفته می شود. با داشتن یک جواب خصوصی که لزوماً در شرایط مرزی صدق نمی کند می توان معادله را به یک معادله همگن با شرایط مرزی تغییر یافته تبد...
15 صفحه اولبررسی قضایای همگرای در روشهای تکراری تعمیم یافته برای حل دستگاه معادلات خطی
چکیده ندارد.
15 صفحه اولالصاق های خطی برای دستگاه معادلات دیفرانسیل درجه دوم
در این پایان نامه، ما ساختار یک الصاق خطی را توصیف می کنیم که مربوط به یک میدان معادله ی دیفرانسیل درجه دوم می باشد؛ انحنای آن را محاسبه نموده و راجع به برخی از کاربردها بحث می کنیم.
15 صفحه اولحل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023